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Abstract 

Benchmarking airports is currently popular both in the academic literature and in practice but has 

proved rather problematic due to the heterogeneity inherent in any reasonably sized dataset. Most 

studies either treat the airport production technology as a black box, or they separate the terminal and 

airside activities, assessing them individually. In this article we analyze airports as a single unit due 

to the direct complementarities, avoiding the artificial separation of inputs between the terminal and 

airside, and opening the black box through the use of network data envelopment analysis (DEA). To 

further improve the benchmarking process, we identify appropriate peers for 43 European airports 

over 10 years through a dynamic clustering mechanism according to pre-defined characteristics, and 

we restrict the integer linear program with respect to potential reductions in capital inputs. Compared 

to basic DEA models, the results of the network DEA structure provide more meaningful 

benchmarks with comparable peer units and target values that are achievable in the medium term. By 

identifying each airport‟s individual reference set, unique airport outliers influence the performance 

measurement less severely than occurs under basic DEA. In addition, the formulation is shown to be 

suitable in assessing different strategies for evaluating aeronautical and commercial activities, not 

only separately but in combination. 
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1. Introduction 

According to the Princeton dictionary, an airport is defined as “an airfield equipped with control 

tower and hangars as well as accommodations for passengers and cargo”. Airports can be defined 

as an important basic infrastructure to a society in which aviation is one of the drivers of a modern 

economy. An alternative approach defines an airport as a private production system in which society 

maximizes social welfare by encouraging airport management to maximise profits, and at the same 

time, considering consumer surplus via some form of airport regulation if deemed necessary. 

Consequently, it is unclear whether airports should be considered as a not-for-profit, public good, as 

is the general approach in the United States, or as a private enterprise maximizing shareholder value. 

Since it would appear to be true that large regions of the world are gradually adopting the privatized 

form (Zhang and Zhang [1]) and that independent authorities running public airports in the United 

States do not behave differently to their private counterparts with respect to productivity (Oum et al. 

[2]), in this article we develop an airport benchmarking methodology from an airport manager‟s 

perspective in which we assume that the airport intends to maximize revenues or minimize costs. 

Liebert and Niemeier [3] review airport benchmarking studies applied to a diverse range of 

activities using various methodologies. The most popular methods include price index total factor 

productivity (Hooper and Hensher [4]; Oum and Yu [5]; Vasigh and Gorjidooz [6], parametric 

stochastic frontier analysis (Pels et al. [7]; Oum et al. [8]) and non-parametric data envelopment 

analysis (DEA). DEA has been used to compare the performance of airports within national 

boundaries, U.S. (Gillen and Lall [9]; Sarkis [10]), U.K. (Parker [11]), Spain (Martín and Román 

[12]; Murillo-Melchor [13]), Australia (Abbott and Wu [14]), Taiwan (Yu [15]), Portugal (Barros 

and Sampaio [16]) as well as airports around the world (Adler and Berechman [17]; Lin and Hong 

[18]). It is rather difficult to draw general inferences since many of these articles arrive at directly 

opposing conclusions. For example, Murillo-Melchor [13] show that Spanish airports in their dataset 

suffer from decreasing returns to scale whereas Martín et al. [12] concluded increasing returns to 

scale for the same set of airports. Abbott and Wu [14] found most Australian airports enjoy 

increasing returns to scale, Pels et al. [7] argue that European airports operate under constant returns 

to scale in air traffic movements and increasing returns to scale on the terminal side and Lin and 

Hong [18] argue that most airports are not operating at an optimal scale. Graham and Holvad [20] 

and Abbott and Wu [14] argue that Australian airports are more efficient than their European 

counterparts, Lin and Hong [18] argue that the U.S. and European airports are more efficient than 

their Asian and Australian counterparts and Pels et al. [7] conclude that widespread European airport 
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inefficiency is not specific to a country or region. Consequently, Morrison [21] has called for a 

balanced approach and dialogue between airport managers and researchers.  

The majority of previous studies have treated airport technology as a single production 

process, avoiding the complexity inherent in airport systems. Gillen and Lall [9] and Pels et al. [7] 

were the first to argue that the airport could be analyzed as two separate decision-making processes, 

one serving airside activities and the other serving landside production. The approach developed in 

this research connects the two sides of the production function, while at the same time opening the 

black box via network DEA (Färe [22]). We argue that a single black box approach would be 

insufficient to capture the rich picture underlying this approximation, as demonstrated in Fig. 1. 

Since the liberalization of the aviation industry in Europe in the late eighties, airports have focused 

on both aeronautical and commercial landside activities. The network DEA approach recognises the 

fact that generalized and fixed costs connected to the two sets of activities can only be split in an 

artificial manner and that while aeronautical revenues draw from passengers, cargo and air traffic 

movements, the non-aeronautical revenue is more closely tied to passenger throughput. Although 

airports may have limited control over traffic volume, non-aeronautical revenues drawn from non-

airport related activities, such as airport cities, are indeed within the purview of airport management. 

As argued in Oum et al. [23], the omission of outputs such as commercial services is likely to bias 

efficiency results as it underestimates the productivity of airports whose managers focus on 

generating additional revenue sources. Many airports attempt to increase revenues from non-

aeronautical sources which are not directly related to aviation activities in order to cross-subsidize 

aviation charges in turn attracting more airlines and passengers to their airport (Zhang and Zhang 

[24]). Revenue source diversification that exploits demand complementarities across aeronautical 

and non-aeronautical services appears to improve airport productive efficiency (Oum et al. [2]). We 

would argue that it is more reasonable to analyze airports as a single unit because of the direct 

complementarities, thus avoid the need to separate inputs between the terminal and airside. In 

general, the airport technology may be defined as a network that consists of multi-production 

processes and stages as described in Fig. 1. Consequently, in this paper we develop a network DEA 

modelling approach in order to measure the relative cost and revenue performance of airports with 

respect to aeronautical and commercial activities simultaneously, whereby activities are connected 

via passengers as the common intermediate product.  
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Fig. 1: Airport network technology 

 

Another issue that appears in the airport benchmarking literature is the problem of 

comparability. A base assumption within the DEA context that has been questioned is the 

homogeneity of the decision-making unit under analysis and the appropriateness of this assumption 

with respect to airports (Morrison [21]). The aim of the formulation presented here is to broach the 

direct question of airport benchmarking in light of the reasonable level of heterogeneity found in a 

multiple airport study. This is necessary to generate sufficient data points for purposes of analysis. In 

order to ensure comparability, we apply a dynamic clustering approach (Golany and Thore [25]) 

using integer linear programming which forms reference sets based on similar mixes of inputs or 

outputs and intermediate products. Certain inputs may be beyond managerial control in the short to 

medium term yet affect airport performance (Adler and Berechman [17]). In general, capital is 

frequently treated as a non-discretionary variable over which airport management has little to no 

control (Banker and Morey [26]). In this research, capital has been defined in terms of declared 

runway and terminal capacity which are agreed upon within a multiple stakeholder setting and result 

in a number that accounts for the airport system configuration. For example, some airports consist of 
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a reasonably large number of runways however, for reasons of weather and/or geographical layout, 

only a smaller portion may be in use in at a given time.  Declared capacity takes this in to account as 

compared to simply counting the number of runways. On the terminal side, check-in counters, 

security and passport control, and gates, all together produce a throughput level per hour that is 

otherwise assumed to be linear within a standard DEA framework. We argue that the capacity of an 

airport, as a proxy for capital, may be adjusted to a certain extent in the medium term, hence the 

model restrictions permit terminal and runway declared capacity to change up to a pre-determined 

level. Pure capital investment is not an appropriate measure even within a specific country because 

the accounting processes differ, rendering the information incompatible. Finally, principal 

component analysis (PCA) combined with DEA (Adler and Golany [27]; Adler and Yazhemsky 

[28]) is applied in the input-oriented model in order to reduce the curse of dimensionality and the 

resulting bias, reducing the set of peer airports from 53% to 38% in the current application. 

The aim of this research is to develop a comprehensive methodology tailored to airport 

benchmarking from a managerial perspective. A comparison with basic DEA results demonstrates 

that the additional restrictions in the network PCA-DEA dynamic clustering formulation lead to more 

reasonable peer comparisons, permitting an analysis of strategies which could potentially be adopted 

over the short and medium term for planning purposes. The model in this research allows airport 

managers to include their industry knowledge in the form of limitations on airport size, the operating 

conditions and the restricted variability of capacity, which is encapsulated in the dynamic clustering 

approach. Given that our data set does not include all airports in Western Europe, the numerical 

analysis presented is purely a case study highlighting the potential of this modelling framework for 

benchmarking airports. To further this aim, we scrutinize three specific airports, namely Vienna, 

Hanover and Lyon, in order to examine the usefulness of the framework developed. For example, the 

results of the under-utilized airport in Hanover indicate that in the medium-term the airport could 

reduce operations to two of their three existing runways, instead of closing two runways as obtained 

with basic DEA, or alternatively attempt to increase cargo throughput as occurred at their two 

medium-term benchmark airports located in Venice and Hamburg. The formulations developed are 

suitable for assessing appropriate strategies with respect to aeronautical and commercial activities 

not only separately but also in combination, assuming cross-subsidization is an acceptable policy. 

According to the combined network DEA dynamic cluster revenue maximization approach, Lyon 

airport has achieved a sustainable level of aeronautical revenues and ought to search for appropriate 

commercial revenue opportunities as opposed to the results from the basic DEA, which suggest a 

further increase in aeronautical revenues of 40%. The methodology provides an airport manager with 

the tools for both exploratory data analysis and inefficiency estimation, removing the need for 
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additional tests of homogeneity. Furthermore, utilizing an hourly capacity measure as both a terminal 

and airside proxy of physical capital appears to be new in airport benchmarking studies. Compared to 

the standard quantity measures such as the number of runways or gates, this proxy provides an 

improved managerial measure of the airport infrastructure as a system and allows us to consider 

bottlenecks at an airport.  

This article is organized as follows: Section 2 presents individual modelling formulations that 

have been combined in Section 3 in order to produce airport benchmarks based on a network PCA-

DEA dynamic clustering approach. Section 4 provides a description of the public data available for 

analysis and Section 5 compares the results of the combined formulations to those of basic DEA 

models and benchmarks a select subset of airports in order to demonstrate the utility of the approach 

developed in this research. Finally, Section 6 concludes and presents recommendations for further 

research.  

 

2. Methodology 

DEA is a non-parametric method of frontier estimation that measures the relative efficiency 

of decision-making units utilizing multiple inputs and outputs. DEA accounts for multiple objectives 

simultaneously without attaching ex-ante weights to each indicator and compares each decision-

making unit (DMU) to the efficient set of observations, with similar input and output ratios, and 

assumes neither a specific functional form for the production function, nor the inefficiency 

distribution. DEA was first published in Charnes et al. [29] under the assumption of constant returns-

to-scale
1
 and was extended by Banker et al. [30] to include variable returns-to-scale. This non-

parametric approach solves a linear programming formulation per DMU and the weights assigned to 

each linear aggregation are the results of the corresponding linear program. The weights are chosen 

in order to show the specific DMU in as positive a light as possible, under the restriction that no 

other DMU is more than 100% efficient. Consequently, a Pareto frontier is attained, marked by 

specific DMUs on the boundary envelope of input-output variable space. Formulation (1) presents an 

input-oriented model assuming variable returns-to-scale.

  
 

                                                 

1 Constant returns to scale means that the producers are able to linearly scale the inputs and outputs without increasing or decreasing efficiency.  
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where superscript a is the index of DMU
a
, the unit under investigation; X

a
 represents the input values 

of DMU
a
; Y

a 
is the output values of DMU

a
 and n  the intensity variable. θ represents the relative 

efficiency score, where a value of 1 indicates efficiency and a value smaller than 1 indicates the 

amount by which the relevant inputs ought to be decreased in order for DMU
a 

to be deemed 

relatively efficient. 

In Section 2.1 we discuss the dynamic clustering mechanism that ensures comparable 

benchmarks are chosen from a dataset given exogenous parameter values. In Section 2.2 we present 

the network DEA model first designed to disaggregate the process of decision-making within a unit. 

Subsequently, in Section 2.3 we discuss the combination of principal component analysis and data 

envelopment analysis, which reduces over-estimation bias and in Section 2.4 we present a multi-

dimensional scaling approach that produces a graphical representation of the data. Finally, in Section 

2.5, we discuss a non-parametric statistical procedure that measures efficiency variation across 

different groups within the dataset in order to estimate the potential impact of environmental 

variables on the relative Pareto efficient frontier. 

2.1 Dynamic clustering  

Basic DEA benchmarking may lead to inappropriate targets for improvement in a dataset in 

which there are substantial differences in size among the DMUs under analysis. Sarkis and Talluri 

[31] propose second-stage clustering to identify benchmarks for poor performers, after applying 

DEA, to determine the relative efficiencies of airports. This study applies a dynamic clustering 

approach first proposed by Golany and Thore [25] that restricts the selection of best practice DMUs 

according to predefined boundaries within the DEA framework in a single stage process. The 
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boundaries of the cluster are defined in relative terms, limiting the efficient reference set
2
 to those 

DMUs whose input-output values are within the distance defined by the proportions.  

In Fig. 2 we demonstrate the impact of the cluster restrictions for a simplified model with two 

outputs and a single input. DMU
a
 is compared to the Pareto frontier (darker line defined by DMUs 3 

to 6) in a standard DEA formulation, with DMUs 4 and 5 acting as benchmarks. In our proposed 

approach, each inefficient airport may refer to a set of benchmarks that do not lie directly on the 

Pareto frontier, rather within the dotted radius. If DMU
a
 lies far enough away from the Pareto 

frontier as shown in Fig. 2, all potential benchmarks will lie in the interior of the envelope, resulting 

in DMUs 1 and 2 acting as benchmarks for DMU
a
. The assumptions of this approach lead to the 

conclusion that DMU
a’’

, the hypothetical observation lying on the interior frontier, represents a 

relevant target which is more accessible than DMU
a’

 in the short to medium term. It should be noted 

that as DMU
a
 is not compared to the overall Pareto frontier, no inference can be made with regard to 

the economic efficiency of this unit as defined under basic DEA. Instead, the motivation of this 

model is to find appropriate benchmarks and short to medium term targets in order to improve airport 

performance. Dynamic clustering improves on the Sarkis and Talluri two-stage procedure since 

additional information, such as the importance of each target DMU, can be drawn from the one step 

procedure. 

 

 

Fig. 2: Benchmark clustering 

 

                                                 

2 A reference set, or peer group, is defined by a subset of units "closest" to the unit under evaluation i.e. with similar mixes of inputs and outputs. 
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2.2 Network DEA 

Network DEA models were first introduced by Färe [22] and Färe and Grosskopf ([32], [33]) and 

subsequently extended by Lewis and Sexton [34], Emrouznejad and Thanassoulis [35], Golany et al. 

[36], Chen [37], Kao [38] and Tone and Tsutsui [39]. Opening the black box permits an analysis of 

the optimal production structure of DMUs and their priorities, to determine both efficient subsystems 

and overall efficiency in order to allocate resources efficiently and determine appropriate targets. 

Castelli et al. [40] provide a classification of DEA models accounting for the internal structure of 

DMUs, depending on the assumptions of the modelling approach and then present mathematical 

formulations, extensions and applications. Fig. 3 demonstrates a network structure in which the 

outputs of some decision making sub-units (DMSU) become inputs for other sub-units. This 

framework has been widely applied in manufacturing production systems and supply chains. In 

transportation, network DEA has been applied by Yu and Lin [41] in order to simultaneously 

estimate passenger and freight technical efficiency, service effectiveness and technical effectiveness 

for 20 selected railways. 

  

 

Fig. 3: Network Decision Making Unit & Sub-Units (Castelli et al. [40]) 

 

This research develops a network model that defines a multi-product airport in which capital, 

labour, materials and outsourcing of services produce traffic volume, in the form of aircraft 

movements, passenger and cargo. This throughput then generates revenues from aeronautical charges 

paid mostly by airlines, and from commercial terminal-side services serving passengers. The overall 

profits of this system are driven by services provided by outside parties including airlines and third 

party contractors as well as the airport processes themselves. Airport management retains reasonable 

control over labour, materials and levels of outsourcing but limited control over capital investments. 

In addition, management controls the variety and the pricing policies offered on the non-aeronautical 

side and partially controls aeronautical tariffs, dependent on the regulatory regime of the relevant 
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country. Network DEA lends itself to a more accurate description of this process than standard 

performance analyses. In this research, network DEA describes the production process, 

demonstrating the sequential effects separating final and intermediate outputs including those under 

partial managerial control and those that are known to be non-discretionary. We have not defined 

multi-component parameters for shared inputs, as suggested in Beasley [42] and Cook et al. [43], 

because the joint resources (costs and airport capacities) could not be separately assigned to 

intermediate services (passengers, cargo and air traffic movements) and cannot be endogenized due 

to a causal (maybe non-linear) relationship between the overlapping intermediate outputs. 

Consequently, our benchmarking framework does not determine an aggregate efficiency score per 

airport as we are aware of airport management control restrictions. We concentrate separately on cost 

minimization given intermediate and final outputs, or on revenue maximization given the inputs and 

intermediate output levels required from the system. 

2.3 Principal component analysis integrated with DEA 

Dependent on the nature of the dataset, the results of the DEA model may not sufficiently 

distinguish between the efficient and inefficient DMUs due to an overestimation bias caused by the 

curse of dimensionality (Adler and Yazhemsky [28]). PCA-DEA is one of the methodologies that 

have been developed to reduce the number of inefficient DMUs incorrectly classified as efficient 

(Adler and Golany [27], [44]). The original variables are replaced with a smaller group of principal 

components (PCs), which explain the variance structure of a matrix of data through linear 

combinations of variables. The principal components are uncorrelated linear combinations ranked by 

their variances in descending order and those that explain little of the variance of the original data 

may be removed thus reducing the dimensions in the DEA linear program. In order to use principal 

components instead of the original data, the DEA model needs to be transformed to take into account 

the linear aggregation.  

A rule-of-thumb computed in Adler and Yazhemsky [28] suggests that at least 76-80% of the 

information should be retained in the model in order to minimize the overestimation bias
3
. Clearly, if 

we use less than full information, we will lose some of the explanatory powers of the data but we 

will improve the discriminatory power of the model. It should be noted that as a result of the free 

sign in principal component analysis and the transformed constraints in the PCA-DEA model, the 

targets and benchmarks obtained could reflect a change in the current mix of input-output levels of 

the inefficient DMUs, along the lines of weight constrained DEA.  

                                                 

3 The rule-of-thumb defines the percentage of retained information required to balance the trade-off between the two incorrect definitions of (in) efficiency, namely efficient decision-

making units defined as inefficient (under-estimation) and inefficient DMUs defined as efficient (over-estimation). 
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2.4 Visualizing multiple dimensions 

 Co-Plot, a variant of multi-dimensional scaling, aids both in exploring the raw data and in 

visualizing the results of DEA (Adler et al. [45]; Adler and Raveh [46]). Co-Plot positions each 

decision-making unit in a two-dimensional space in which the location of each observation is 

determined by all variables simultaneously according to a correlation analysis. The graphical display 

technique plots observations as points and variables as arrows, relative to the same arbitrary center-

of-gravity. Observations are mapped such that similar DMUs are closely located on the plot, 

signifying that they belong to a group possessing comparable characteristics and behavior. A general 

rule-of-thumb states that the picture is statistically significant if the coefficient of alienation is less 

than 0.15 and the average of correlations is at least 0.75
4
. We apply Co-Plot to the set of variable 

ratios (each output divided by each input), in order to align the technique with DEA, such that Co-

Plot graphically displays the DEA results in two dimensions. In general, the efficient DMUs appear 

in the outer circle of the plot signifying their relative achievements and we exogenously determine 

the color of the DMUs in order to clarify the results of the DEA. 

2.5 Measuring variation across groups 

In order to determine whether there are distinct differences between groups of airports, we apply 

the program evaluation procedure outlined in Brockett and Golany [47] and Sueyoshi and Aoki [48]. 

Four steps are required to implement the procedure. In the first step, the complete set of DMUs 

(j=1,…,n) are split into k sub-groups and the model is run separately over each of the k groups. In the 

second step, for each of the k individual groups, the inefficient DMUs are moved to their 

hypothetical efficient level by projecting them onto the efficient frontier of their relevant group. In 

the third step, a pooled DEA is run with all n DMUs based on their adjusted variables. In the fourth 

step, a Kruskal-Wallis test is applied to determine if the k groups possess the same distribution of 

efficiency values within the pooled set. If the null hypothesis is correct, we expect to see most of the 

DMUs rated as efficient in step three. Note that in order to avoid inaccuracy in the nonparametric 

rank test, the number of observations in each of the k subgroups should be of similar size. If this is 

not the case, the size of the smallest subgroup is calculated and simple random sampling without 

replacement is applied to form subgroups of equally small sized samples. In order to test whether the 

findings are robust, Banker‟s F-test (Banker [49]) may be applied in the last stage of the procedure. 

 

                                                 

4 The coefficient of alienation is a single measure of goodness-of-fit for the configuration of n observations obtained from a smallest space analysis (Guttman [50]). The higher the 

correlation, the better the common direction and order of the projections of the n points along the arrow. The length of the arrow is proportional to the correlation. 
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3. Model formulations 

In this section we describe three network PCA-DEA approaches with dynamic clustering that are 

then applied in Section 5. The application of network DEA to airports is new and to the best of our 

knowledge, we are aware of one working paper in the field, Lozano and Salmerón [51], in which 

capital utilization rather than managerial efficiency is analyzed based on network-DEA. Given the 

public data available for the study, Fig. 4 presents the airport network technology that we analyze 

based on a subset of variables described in Fig. 1. X represent inputs, Y outputs and I intermediate 

products. The number in brackets represents a node index in the network. 

Model (2) assumes that airport management is interested in maximizing revenues, drawing from 

aeronautical activities and concessions given airport throughput on the terminal and airsides, which 

are in turn limited by the physical infrastructure and associated costs available to support the system. 

Drawing on discussions with airport managers and Pels et al. [7], we assume constant returns to scale 

with respect to revenues in that a doubling of the intermediate inputs, namely passengers, air traffic 

movements and cargo, should increase revenues at an equivalent rate. The network DEA formulation 

for the radial, output-oriented, constant returns to scale, mixed integer linear program applied in this 

research is presented in model (3.1), where superscript a is the index of DMU
a
, the unit under 

investigation; X
a
 represents the input values of DMU

a
; Y

a 
and I

a
 are the output and intermediate 

Inputs (1): 
Staff costs  X1 

Other operating costs X2 

Runway capacity X3 

Terminal capacity X4    

Intermediate goods (2): Number of passengers: 

International I1 

Domestic  I2  

Intermediate goods (3): 

Tons of cargo I3       

ATM  I4    

Output (4): 
Non-aeronautical revenues Y1 

 

Output (5): 

Aeronautical revenues  Y2 

Fig. 4: Two-stage airport network technology 
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values of DMU
a
 respectively and the subscript of intensities for DMU

a
,

n

ij
λ , denotes the link leading 

from node i to node j in the network presented in Fig. 4. θ1 and θ2 represent the relative performance 

for the commercial and airside activities respectively, where a value of 1 indicates a position on the 

interior frontier and a value greater than 1 indicates by how much the relevant revenues ought to be 

increased in order for DMU
a 

to move towards the frontier. It should be noted that the first four rows 

of model (3.1) are not summed over n, in order to restrict envelopment intensities 
nλ
24

 and 
nλ
235

, thus 

comparing airports that possess input levels that lie within a boundary of 10% to 300% of DMU
a
 

inputs and between 20% and 200% of DMU
a
 intermediate outputs. Parameter values, αl=0.1, αu=3, 

βl=0.2, βu=2, were chosen such that a sufficiently rich set of airports exist in the cluster. Sensitivity 

analyses of our current dataset suggest that smaller bounds result in excessive limitations and pure 

self-comparisons over time whereas a wider set lead to unreasonable benchmarks whereby London 

Heathrow (LHR) and Tallinn (TLL), representing the largest and smallest airports in the dataset, are 

considered directly comparable. 

In order to connect Fig. 4 and the clustering approach, 
nλ

12
 and 

nλ
13

 are binary variables and 
nλ
24

 

and 
nλ
235

 are non-negative continuous variables. If 
nλ

12
=1 then DMU

n
 could be included in the peer 

group for DMU
a
 on the non-aeronautical side and if 

nλ
12

= 
nλ

13
=1 then DMU

n
 could be included in the 

peer group for DMU
a
 on the aeronautical side. 

nλ
12  

consequently connects costs to the number of 

passengers produced and 
nλ

13
 connects costs to cargo and air traffic movement production such that 

DMUs of similar size and cost structure represent potential benchmarks
5
. 

nλ
24

connects the number of 

passengers to non-aeronautical revenue derived and 
nλ
235

 connects passengers, cargo and air traffic 

movements to aeronautical revenue. Since no trade-off between aeronautical and non-aeronautical 

activities is introduced in the model, benchmarks on each side of the airport activity are determined 

independently. 

 

                                                 

5 The effect of this approach is depicted in Figure 2 resulting in DMUs 1 and 2 acting as benchmarks for DMUa: 
2,1

12 and 
2,1

13  are binary variables equal to 1 since they lie within the 

boundaries of the first four equations in model (2) whereas 
5,4

12  and 5,4

13  equal 0.  
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       (2) 

 

Alternatively, whilst it may be assumed that a private, unregulated airport pursues profit 

maximization, airports that are subject to economic regulation may behave as social welfare 

maximizers. Hence, maximizing aeronautical revenues may not be the target of airport management 

due to regulatory constraints. Furthermore, even profit maximizers may consider lower aeronautical 

charges as an opportunity to expand non-aeronautical activities and generate additional revenues by 

attracting airlines through lower airport charges. Consequently, the network DEA formulation for the 

radial, output-oriented, constant returns-to-scale, mixed integer linear program combining both 

aeronautical and concession activities is presented in (3). The goal is to maximize non-aeronautical 

revenue (Y1) given international and domestic passengers, cargo and air traffic movements. Physical 

infrastructure (terminal and runway movements), costs (labour and materials) and intermediate 

outputs define the reference set for each DMU as in model (2). Aeronautical revenue (Y2) is included 

in the analysis as a non-discretionary variable (Banker and Morey [26]). According to this model, 

benchmarks consist of airports achieving higher non-aeronautical revenues, given similar levels of 

aeronautical revenue whilst comparing airports of similar size and demand levels. In the following 

we will refer to (2) as the independent model where the clusters were independently defined and the 

performance of the aeronautical and non-aeronautical side estimated separately. Formulation (3) 

presents the combined model since a common set of benchmarks are considered but only non-

aeronautical revenues are maximized. 
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The network PCA-DEA formulation for the radial, input-oriented, variable returns-to-scale, 

mixed integer linear program proposed in this research is presented in formulation (4). The cost 

minimization assumes variable returns to scale, since a doubling of output should not necessarily 

result in a doubling of staff, materials and outsourcing costs (Gillen and Lall [9]; Pels et al. [7]). As 

opposed to the output-oriented model, we have combined domestic and international passengers into 

one intermediate variable Ipax in order to reduce the number of variables. Furthermore, we have 

applied principal component analysis (PCA) to reduce the over-estimation bias and improve the level 

of discrimination in the results. The first principal component (PCcost) combines staff costs and other 

operating costs, explaining 89% of the variance in the original data. PCcap combines terminal and 

runways capacities, explaining 85% of the original information. Including all PCs would provide 

precisely the same solution as that achieved under the original DEA formulation.  

Model (4) clusters airports according to revenue and traffic mix, whereby the total number of 

passengers is included in the commercial side and all intermediate activities are included in the 

aeronautical side. Parameter values were set at αl=0.1, αu=3, βl=0.2, βu=2. 
nλ
24

,
nλ
25

 and 
nλ
35

 are binary 

variables and 
nλ

12
 and 

nλ
123 

are non-negative continuous variables. Scost and Scap are slack variables 

and lcost and lcap are normalized eigenvectors based on costs and capacities respectively. θ1 and θ2 

represent the restricted relative efficiency scores on the terminal side and airside respectively, 

whereby a score of 1 means that the airport lies on the (interior) frontier and less than 1 indicates the 

level of input retraction required in order to catch-up with the benchmarks identified. θ1=1 indicates 

a cost minimization approach with respect to the non-aeronautical activities of the airport and θ2=1 

indicates cost minimization with respect to all activities of the airport (passengers, cargo, air traffic 

movements) whereby the source of revenues draws from both the non-aeronautical and the 
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aeronautical sides. To restrict the variability of physical infrastructure, we assume that terminal and 

runway capacities may be adjusted up to 30% in the medium term (δ=0.7).  
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4. Dataset  

In this section we describe the variables collected, additional environmental variables that may be 

required to adapt the model to ensure homogeneity of the production process and the complete set of 

observations together with an initial exploratory data analysis. The dataset consists of 43 European 

airports located in 13 different countries. In order to increase the likelihood of comparability, we 

focus the case study on European airports. In Europe passenger terminals are normally operated and 

maintained by the airport operator whereas in the U.S., airports frequently contract out such activities 

to airlines making cross-comparisons somewhat problematic. However, disaggregated data for major 

European airports such as Paris Charles de Gaulle, Barcelona or Madrid, all of which belong to 

airport groups or authorities, were not available as financial data is only reported for the entire group. 

Consequently, we have pooled the data to an unbalanced set of 294 observations covering the time 

period from 1998 to 2007 (the Appendix lists the set of airports under study, the specific timeframe 

for which the data was available and whether ground handling processes are undertaken in-house or 
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outsourced). All airports offer domestic and international routes, however airports located in smaller 

countries such as the Netherlands generally have very few domestic destinations. The passenger 

volume varies considerably from less than a million passengers at Tallinn and Durham Tees Valley 

airports up to more than 60 million at London Heathrow, the largest European airport in terms of 

passenger throughput and number three in the world (Airports Council International [52]).  

Ten variables were collected in total for purposes of analysis based on publicly available data. 

The variables are categorized into three groups; four inputs (X), four intermediate products (I) and 

two outputs (Y). Table 1 presents summary information and specifies the data sources. The operating 

inputs consist of staff costs and all other non-labour related operating costs, which include materials 

and outsourcing. Although a smaller airport than London Heathrow in terms of air traffic 

movements, Frankfurt‟s staff costs are highest due to the level of vertical integration whereby the 

airport operates most of the services by itself or through wholly-owned subsidiaries. As an example, 

the airport manages the ground handling operations which represent one of the most labour intensive 

activities at an airport, a process traditionally organized by airlines or independent third party 

providers at Heathrow. Consequently, Heathrow spends the most on other operating costs, reflecting 

the high levels of outsourcing undertaken. 

Generally, as a proxy for capital, physical data such as the number of runways, gates, check-in 

counters and overall terminal size is collected. However, such data is often problematic because the 

number of runways does not include information on the configuration or the impact of weather on 

the number of runways open within a given timeframe. Furthermore, the terminal area in square 

metres is somewhat subjective since some airports report gross terminal area including sections of an 

airport that are not open to the public. If the dataset covers more than one country, the monetary 

measurement of physical capital also creates difficulties due to different national accounting 

standards and depreciation methods or periods across countries. For example, the airports of the 

British Airports Authority (BAA) depreciate their runways over 100 years whereas the airports 

operated by the Aéroports de Paris depreciate over a period of 10 to 20 years (Graham [53]). In this 

research, terminal capacity is defined in terms of passengers handled within an hour, thus combining 

the capacities of all terminal facilities including check-in counters, security controls, baggage 

delivery and retail area into one common capacity figure. The airside is defined by the declared 

runway capacity, specified as the number of departing and arrival movements specified per hour. 

Airport stakeholders negotiate this parameter biannually which is primarily used to avoid congestion 

at schedule facilitated airports and aid in the allocation of slots at coordinated airports (IATA [54]). 

The advantage of using declared capacity is that the parameters account for bottlenecks across the 

terminal and runway systems, providing two individual capacity measures. Amsterdam possesses the 
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highest agreed terminal and runway capacities in our sample with 26,000 passengers and 110 

movements per hour. Due to their geographical location near the coast, they require a special runway 

configuration to operate as a hub airport. The smallest airport with respect to runway capacity is 

Florence in the Tuscany region, with a maximum hourly rate of twelve movements. Due to its short, 

single runway system (1,688 m), the airport can handle aircraft up to the size of a Boeing 737 or an 

Airbus A319 (Aeroporto di Firenze [55]).  

The annual traffic volume is represented by the number of passengers, commercial air traffic 

movements and tons of cargo (trucking is excluded). The passengers are divided according to 

domestic and international destinations. Unfortunately, we could not collect enough data to separate 

the passengers between intercontinental and European flights or account for transfer passengers, 

which would be preferable since these groups probably generate different revenue streams. Non-

aviation revenues include revenues from retail activities and restaurants, concessions and income 

from rents and utilities. Aviation revenues are generated from (often regulated) landing and 

passenger charges, ground handling undertaken in-house and cargo activities. The largest non-

aeronautical revenues were generated at Heathrow, whereas Frankfurt earned the highest aviation 

revenues. Commercial revenues equal 67% of total airport revenues on average in the dataset, clearly 

supporting the argument that non-aeronautical activities should not be ignored in a productivity 

analysis of airports from a managerial perspective, particularly when considering the possibility of 

cross-subsidization. 

All financial data is deflated to the year 2000 and adjusted by the purchasing power parity 

according to the United States dollar in order to ensure comparability across countries. In addition, 

the data has been normalized by the standard deviation to limit the influence of outliers in the 

dataset. 
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Table 1: Variables in airport performance analysis 

Variable Description Name Average Maximum Minimum Source 

Staff costs   Wages and salaries, other staff costs X1 81,704,359 1,080,756,267 5,962,213 Annual Reports 

Other operating  

costs 

Costs of materials, outsourcing and 

other  
X2 103,364,471 725,987,196 5,010,381 Annual Reports 

Declared runway  

capacity 
Total movements per hour X3 49 110 12 

IATA [56], Airport and 

Coordinator Websites 

Terminal  
capacity 

Total passenger throughput per hour  X4 6,768 26,000 450 
IATA [56], Airport 
Websites 

International  

passengers 
Annual passenger volume  I1 10,300,571 61,517,733 355,579 

IATA [56], Airport 

Websites 

Domestic  

passengers 
Annual passenger volume  I2 2,433,287 9,932,208 48 

IATA [56], Airport 

Websites 

Cargo Metric tons (trucking excluded) I3 214,076 2,190,461 37 
IATA [56], Airport 

Websites 

Air transport 
movements 

Total commercial  movements I4 152,133 492,569 16,000 
IATA [56], Airport 
Websites 

Non-aeronautical  

revenues 

Revenues from concessions own retail 

and restaurants, rents, utilities and 
other  

Y1 117,906,043 1,107,046,057 4,629,813 Annual Reports 

Aeronautical  

revenues 

Landing, passenger and aircraft 

parking charges; revenues from ground 
handling, cargo revenues and other  

Y2 175,507,645 1,739,331,693 7,199,668 Annual Reports 

 

5. Results 

In the following section we identify the impact of vertical integration and subsequently include 

the information in the dynamic clusters. In section 5.2 we compare and contrast the results of a basic 

DEA model with the network PCA-DEA formulation. Section 5.3 discusses the benchmarking 

results for a subset of airports, specifically Vienna which acts as a benchmark in the current case 

study, Hanover as an example of an input-oriented inefficient case and finally Lyon, in order to 

compare and contrast the independent output model (formulation 2), which assesses the performance 

estimates of both revenue generating activities separately, and the combined output model 

(formulation 3) in which only commercial revenues are maximized. 

5.1 Efficiency variation across groups 

When estimating the relative efficiencies, it would appear that airports offering in-house ground 

handling services operate on a different production frontier to airports that outsource this activity. 

This is not immediately obvious since airports providing ground handling services in-house have 

higher labour costs whereas airports that outsource the activity have higher „other‟ costs. Both 
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models have higher revenues than airports that permit third parties to provide the service since no 

costs appear on the books and only minor concessional fees may be collected because the contracts 

themselves do not appear on the airport‟s accounting books. To evaluate the potential for different 

productivity levels, the non-parametric program evaluation procedure was applied to basic DEA 

which contains the last stage of formulations (2) and (4), combining both sources of revenues into 

one efficiency estimate. Based on Fig. 4, the output orientation assumes constant returns-to-scale and 

includes nodes {2345}, while the input orientation includes the inputs and outputs from nodes {123} 

and assumes variable returns-to-scale. In our sample, 21 airports offer ground handling and 22 

outsourced or never offered this service which translates into 156 DMUs in the ground handling 

group and 138 DMUs otherwise (see Appendix). The results are clear and significant that airport 

operators providing ground handling appear to be revenue maximisers but were highly inefficient in 

cost minimization relative to airports from the non-ground handling group. Graph (a) in Fig. 5 shows 

the DEA efficiency scores on the vertical axis for the two groups from a revenue maximization 

perspective and (b) shows the DEA efficiency scores from the cost minimization perspective across 

the two groups. Airports with ground handling activities perform on average 10% better in 

maximizing their outputs as their aeronautical revenues per passenger are naturally higher whereas in 

the input-oriented model, airports that do not provide ground handling achieve on average 10% 

higher efficiencies since no costs are associated with this service.  

 

(a) Output-orientation 

Source 
Sum of 

squares 

Degrees 

of 

freedom 

Mean 

Squares 

Chi-

sq 

Prob > 

Chi-sq 

Groups 243,606 1 243,606 33.7 6.4e-009 

Error 1,873,769 292 6,417   

Total 2,117,376 293    

 

(b) Input-orientation 

Source 
Sum of 

squares 

Degrees 

of 

freedom 

Mean 

Squares 

Chi-

sq 

Prob > 

Chi-sq 

Groups 357,302 1 357,302 49.4 2.0e-012 

Error 1,760,162 292 6,028   

Total 2,117,465 293    

 

Fig. 5: Kruskal-Wallis ANOVA for outsourcing
6
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In order to test the robustness of our findings, the Banker F-test [49] is also applied both in the 

third stage of the program evaluation procedure and on basic DEA scores when two sub-groups of 

DMUs face the same frontier as suggested in Banker [49], assuming exponential
7
 and half-normal

8
 

inefficiency distributions (Table 2). 

 

Table 2: Banker F-test for outsourcing  

(a) Output-orientation 

Inefficiency distribution  Test applied on  Test Statistic Prob>F 

Exponential 
Entire dataset  2.5726 5.62797E-16 

Program evaluation procedure 3.9766 4.69994E-31 

Half-normal 
Entire dataset 5.5646 9.70871E-24 

Program evaluation procedure 9.1030 3.84569E-36 

(b) Input-orientation 

Inefficiency distribution  Test applied on Test Statistic Prob>F 

Exponential 
Entire dataset 2.8054 1.33497E-18 

Program evaluation procedure 9.1584 1.27351E-70 

Half-normal  
Entire dataset 7.8721 2.68437E-32 

Program evaluation procedure 22.7297 1.3301E-123 

 

The results also proved to be consistent for a basic DEA model in which air traffic movements, 

passengers, cargo and commercial income including ground-handling revenues were selected as 

output in order to adjust for the effect of outsourcing. Staff and other operating costs and runway and 

terminal capacities were defined as inputs. Having now considered both costs and revenues in the 

efficiency estimation, the radial variable returns-to-scale, input-oriented model still indicated 

significant efficiency differences across both groups based on the results of a Kruskal-Wallis test. In 

summary, both the non-parametric Kruskal-Wallis and parametric F-test reach the same significant 

result supporting a rejection of the null hypothesis (Fig. 5 and Table 2). After liberalization in 1996, 

airports that provided ground-handling were required to permit competitors‟ access. Munich and 

Frankfurt have claimed substantial losses in this segment on a regular basis (Dietz [57]; Hutter 

[58])
9
. However, the strong labour unions in Germany have prevented airport management from 

either cutting wages or outsourcing this service to third-party providers without guarantees that 

                                                                                                                                                                    

6 The vertical axis of the boxplot represents the efficiency scores computed in the third step of the program evaluation procedure (a score of one implies relative efficiency). 
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9 Most German airports are fully or at least major publicly owned and if ground handling is operated in-house by the parent company, the airport pays salaries based on public tariffs, 

which are on average 20% higher compared to private ground handling companies. Some German airports, such as the minor-private airport Hamburg, outsourced the ground handling 

segment to a 100% subsidiary in order to set flexible tariffs however this was not deemed acceptable by the public shareholders of Munich for example. 



    22 

 

workers would continue under the same conditions. Thus, at least in the short-term, the degree of 

outsourcing can be regarded as a political factor that is beyond managerial control and ground 

handling is included in the network DEA formulation as an environmental variable which will 

further limit the potential benchmark set via clustering. Consequently, we analyse airports that offer 

ground handling services entirely separately from airports outsourcing this activity to airlines or 

independent providers, in turn limiting comparisons to airports operating similar strategies. 

5.2 Comparison of basic and network DEA 

In contrast to our formulations (2 to 4), basic DEA does not restrict potential benchmarks nor 

does it permit a limited deviation in one or more variables. In order to assist the comparison between 

basic and network DEA results, we have exogenously divided the dataset according to in-house or 

outsourced ground handling provision and applied DEA individually to each category. For the output 

orientation, the technology of Fig. 4 reduces to nodes {235} and {24} with respect to aeronautical 

and commercial activities respectively, while the input orientation case collapses to nodes {12} when 

assessing the non-aeronautical side and {123} with respect to both activities.  

The basic DEA results generate consistently efficient airports that belong either to the set of 

smallest airports e.g. Bremen, Florence and Ljubljana, which provide ground handling in-house and 

Malta, Durham Tees Valley and Leeds/Bradford which outsource, or the largest airports in the 

sample such as Frankfurt. In neither output-oriented formulations do airports achieve 100% 

efficiency over the entire review period, although Salzburg, Ljubljana and Malta appear consistently 

close to the frontier. A notable exception is Cologne-Bonn, which remains cost efficient with respect 

to both activities but operates very inefficiently (between 44% and 77% over time) with respect to 

the commercial side. Cologne-Bonn is the European hub for the parcel service provider UPS, which 

rents office space and warehouses from the airport, suggesting a behaviour different to others in the 

sample (Cologne-Bonn Airport [59]).  

Under basic DEA, all airports are compared against a single Pareto frontier and Salzburg 

represents an important benchmark for Vienna, Dusseldorf, Frankfurt, Hamburg and Munich. 

However, it is doubtful that the management of a primary or secondary hub airport would adopt the 

strategies of an airport that handles less than 2 million passengers per year with very low cargo 

throughput too. Durham Tees Valley, a small airport in East England with less than 700,000 

passengers per year was defined as a benchmark for Lyon, Geneva, Oslo and the hub airport in 

Zurich, which would not occur in the formulations we present due to the dynamic clustering 

approach. 
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Airports in very small clusters are unique in character and in the extreme case tend to form their 

own reference set. In the current dataset, these mostly included the smaller and less congested 

airports such as Tallinn, Leeds/Bradford and Durham Tees Valley. These airports can be identified as 

outliers according to the Andersen and Petersen [60] super efficiency procedure. Such observations 

frequently influence the basic DEA Pareto frontier, for example Durham Tees Valley appears within 

the reference sets of Oslo and Zurich airports. In comparison, the results of the cost minimization 

formulation (3.3) categorizes Copenhagen and London Stansted as peer airports for Oslo and Zurich 

hence the modelling approach indicates benchmarks that are more homogeneous in character. 

Another unique example includes Dortmund, which acts a self benchmark in the cost minimization 

approach from 2003 to 2007, namely after their capacity expansion and severe reduction in cargo 

operations. Dortmund is the only airport that exhibits operational losses over the entire timeframe. 

The airport is partly owned by the local electricity distributor and losses are covered by their major 

shareholder (Dortmund Airport [61]). Dortmund is located in the Ruhr area (Ruhrgebiet) with a 

population of more than five million, representing the largest agglomeration in Germany. Airport 

competition includes Dusseldorf, Cologne-Bonn and Paderborn which are located in their catchment 

area (defined as 90 km around the airport) and intermodal competition includes high speed rail and 

the motorway, especially on domestic routes and traffic originating in Benelux. Hence despite their 

high capital investment, it may be necessary for the airport to further decrease their aviation charges 

in order to attract airlines and new destinations thereby generating additional commercial revenues. 

The network DEA formulations provide the user with an exploratory data analysis that does not 

exist in the basic DEA results. The results of formulations (3.1) and (3.3) demonstrate that the 

average cluster size for each inefficient airport was reasonably small because the capacity of airports 

varies considerably across the sample and some airports suffer low utilization rates whereas other are 

highly congested. The operating costs at highly congested airports were large mostly due to 

employee costs hence airports with similar capacities did not necessarily belong to the same cluster. 

In general, large clusters indicate that various airports in the sample possess similar characteristics 

which in our dataset included Dusseldorf, Hamburg, Strasbourg, Venice and London Gatwick.  

5.3 Benchmarking airports 

In this sub-section, we describe the type of results and analysis that are achievable by collecting 

data and applying the formulations described in Section 3. We focus on relatively productive Vienna, 

relatively inefficient Hanover and finally Lyon, in order to describe the potential balance between the 

two revenue streams. Vienna is an example of an airport that has gradually improved on both the cost 

inputs and revenue outputs over time. Vienna appears in the reference set of Cologne-Bonn and 
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Dusseldorf in the input-oriented case. Between 1998 and 2007 Vienna‟s costs and revenues increased 

on average by similar proportions (99% and 94% respectively)
10

, while traffic volume grew by 76% 

for total passengers, 54% for air traffic movements and 37% for cargo. The input-oriented case in 

Fig. 6 shows that from 1998 to 2003, Vienna lies close to the arrows that display the ratio of 

intermediate outputs to costs. In 2004, both staff costs and other operating costs substantially 

increased partly due to the introduction of a 100% hold baggage screening policy and the founding of 

a subsidiary for infrastructure maintenance (Vienna International Airport [62]). After 2004 greater 

emphasis has been allocated to the issue of runway utilization, viewed in Fig. 6 by the proximity of 

the later years to the capital asset related ratios. Vienna airport moves in a positive direction towards 

an improved utilization of the runways which increased from 48% to 66% between 2000 and 2007. 

Hence, despite substantial cost increases, the airport still managed to increase its relative 

performance as their costs per air traffic movement decreased over time. On the aeronautical output 

side, the airport management changed their regulated tariff structure by increasing passenger charges 

from an average price of 3.90€ in 1999 to 5.90€
11

 in 2007 and decreasing overall landing charges by 

3%, whilst reducing them for larger aircraft by up to 20%. In summation, Vienna airport increased 

passenger charges out of the total aviation revenues collected from 33% in 2001 to 46% in 2007 and 

decreased the share of landing fees from 44% to 28% over the same period (Vienna International 

Airport [62]). These policies appear to have aided Vienna to achieve revenue productivity.  

                                                 

10 Staff costs increased by 111% and other operating costs by 88%. Non-aeronautical revenues increased by 78% and aviation revenues by 109%. 

11 These values are an average passenger price and were computed by dividing total passenger revenue charges by passenger throughput as obtained from the annual reports. They could 

therefore deviate from the passenger charges specified in the charges manual. Both prices were given in nominal values. 
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Fig. 6: Co-Plot graphic display of Vienna’s input-oriented strategy
12

  

 

Hanover airport is the ninth largest airport in Germany handling 5.6 million passengers in 2008 

(ACI [52]). It is partly owned by the Fraport AG Company which owns and operates Germany‟s 

gateway hub in Frankfurt/Main. Whilst Hanover‟s non-aeronautical revenues from rents and utilities 

increased over the decade analyzed due to the development of a large airport city, the relative cost 

performance θ1 consistently dropped from 72% in 1998 to 60% in 2006
13

. Over the same time 

period, passenger volume increased by 17%, air traffic movements by 8% and cargo dropped by 37% 

however staff costs and other operating costs increased by 80% and 64% respectively, as shown in 

Table 3. Fig. 7 displays the gradual decline in productivity (see the red arrow) and the change in 

benchmarks over time from Venice to Nuremberg (see white dots), the latter representing a relatively 

more expensive airport to operate
14

. From the technical perspective, Hanover shows potential to 

expand airport activities due to a declared runway capacity of 60 movements per hour. Capacity 

utilization at Hanover remained at a stable 23%, whereas Florence and Venice achieve 40% 

utilization and Hamburg slightly more than 50%. Nuremberg, Hanover‟s benchmark, achieves a 

                                                 

12 Coefficient of alienation is 0.06 and average of correlations is 0.89. 

13 If δ=1 is assumed, terminal and runway capacities may decrease to a lower limit of zero. Hanover‟s cluster of 100 DMUs is stable over time, a common set of benchmarks exists 

between 1998 and 2006 (Florence, Hamburg and Venice) and a comparison of θ1 over time is possible. Over the same period θ2 is close to 1 due to overestimation bias caused by the 

relatively limited cluster size of 30-40 DMUs.  

14 If δ=0.7 is assumed, terminal and runway capacities may be adjusted up to 30% in the medium term. As a result θ1=0.7 since 2001, although the dynamic clustering shows the change 

in productivity over time through changes in the set of benchmarks (see Table 3 and Fig. 6).  
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capacity utilization of less than 40% which is still higher than that of Hanover. Bremen and Dresden 

are the long term benchmarks according to basic DEA, which appear as black dots on the left edge in 

Fig. 7
15

. When comparing the results for Hanover in 2007 with respect to network PCA-DEA 

(θ1=0.7) and basic DEA (θ1=0.49) it becomes clear that the long term goal for Hanover, ceteris 

paribus, would be to close two of the three runways. The medium-term network DEA results suggest 

that it would be sufficient to close the equivalent of a single runway.  

Table 3: Benchmarking Hanover airport 

Airport 
Declared 
Runway 

Capacity 

Terminal 

Capacity 

Staff Costs 

(US$) 

Other 
Operating 

Costs (US$) 

Domestic 

Passengers 

International 

Passengers 

Air 
Transport 

Movements 

Cargo (tons) 

DMUs under review 

HAJ1998 50 4,000 39,137,748 41,838,277 1,014,723 3,814,405 70,815 10,954 

HAJ1999 50 4,000 44,100,404 40,270,806 1,080,384 4,017,528 76,914 7,724 

HAJ2000 60 4,000 49,858,032 35,123,344 1,246,083 4,284,201 83,687 9,027 

HAJ2001 60 4,000 49,344,453 39,876,433 1,067,834 4,089,724 75,368 6,712 

HAJ2002 60 4,000 48,501,264 37,857,069 1,018,412 3,733,509 73,278 6,058 

HAJ2003 60 4,000 51,602,584 46,057,783 1,010,975 4,033,895 74,960 6,338 

HAJ2004 60 4,000 54,282,812 48,081,380 1,060,005 4,189,164 74,251 6,091 

HAJ2005 60 4,000 61,893,620 58,038,723 1,137,940 4,499,445 76,585 6,551 

HAJ2006 60 4,000 66,510,634 58,753,898 1,222,533 4,476,766 76,255 5,954 

HAJ2007 60 4,000 70,453,727 68,607,888 1,215,036 4,429,546 76,263 6,912 
 

DMUs under 

review 

Changing benchmarks over time according to formulation 3.3 and dual values (λ12) for δ=0.7 

Florence  

2000 

Hamburg 

1998/9 

Venice 

2004/5 

Genoa 

2000 

Nuremberg 

2001/2/3/7 

Vienna 

1999 

HAJ1998 0.46 0.29 0.25    

HAJ1999 0.43 0.34 0.23    

HAJ2000 0.28 0.28 0.43    

HAJ2001 0.15 0.29 0.33 0.23   

HAJ2002 0.28 0.17 0.37  0.18  

HAJ2003 0.13 0.22 0.27  0.38  

HAJ2004                           0.35 0.21 0.35 0.09  

HAJ2005 0.37  0.32  0.03 0.28 

HAJ2006                             0.19 0.14  0.55 0.13 

HAJ2007   0.18  0.57 0.25 

 

Hanover‟s management may find it rather difficult to improve capacity utilization due to the 

airport‟s highly competitive location. The airport faces direct competition from Hamburg and 

Bremen that are in close proximity, as well as Dortmund, Paderborn and Münster-Osnabrück, which 

primarily serve charter and low cost carriers and are less than two hours drive by car, as shown in 

Fig. 8. Potential competition includes regional airports located in Braunschweig-Wolfsburg, Kassel-

Calden and Magdeburg-Cochstedt, none of which currently operate commercially although plans 

exist to offer commercial flights from Kassel-Calden in 2012 (Flughafen Kassel-Calden [63]). 

Additional intermodal competition includes the ICE high speed rail alternative and a highly 

connected motorway network. In conclusion, Hanover faces direct, potential and intermodal 

                                                 

15 According to basic DEA, θ1 decreased slightly from 54% in 1998 to 50% in 2006 and the benchmarks include Bremen, Dresden, Hamburg and Florence over the entire period. 
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competition hence the airport needs to cut costs by as much as 40%, further develop non-airport 

related activities and attempt to attract cargo throughput. The latter strategy may increase runway 

utilization and seems reasonable given the high level of connectivity of the city and the lack of night 

flights restrictions due to their location. 

 

Fig. 7: Co-plot of input minimization results with emphasis on Hanover
16

  

 

 

Fig. 8:  Catchment area of Hanover airport (2 hour drive)
17

 

                                                 

16 Coefficient of alienation is 0.137 and average of correlations is 0.829. 
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Our final analysis presents the benchmarking results for Lyon Saint-Exupéry, which is the fourth 

largest airport in France, with a passenger throughput of 7.9 million in 2008 (ACI [52]). Similar to 

the majority of French regional airports, Lyon is fully publicly owned and operated by the regional 

Chamber of Commerce. Lyon airport became a major regional hub airport for the national carrier Air 

France at the end of the 1990s and today, Easyjet is their second largest customer (Lyon Aéroport 

[64]). In the independent revenue maximizing formulation (2), Lyon improved in aeronautical 

performance (θ2) from a score of 2.09 to 1.02 between 1998 and 2005
18

, benefiting from a change in 

the tariff structure similar to that of Vienna airport. The important peer airports include privatized 

BAA Glasgow and Basel-Mulhouse, both of which focus on low cost carrier traffic. Glasgow serves 

Easyjet and Scottish Loganair in competition with Ryanair at Prestwick, and Basel-Mulhouse serves 

Easyjet, which achieved a market share of almost 50% in 2007 (Flughafen Basel-Mulhouse [65]). 

With respect to non-aeronautical activities, Lyon increased its performance (θ1) from 1.68 in 1998 to 

1.41 in 2005, in part due to the large increase in car parking revenues, rents and utilities which 

contributed to a 67% increase in overall commercial revenues (see Table 4). Benchmarks on the non-

aeronautical side include Basel-Mulhouse and Marseille, with the former generating more than 50% 

of their revenue from commercial sources, the majority of which are derived from retail sales, rents 

and utilities.  

                                                                                                                                                                    

17 Source: adapted from ADV [66]. 

18 Lyon‟s benchmark clusters are stable over time according to formulation 3.1. 
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Table 4: Output benchmarks for Lyon airport 

Airport  
Domestic 
Passengers 

International 
Passengers 

Movements Cargo 
Aeronautical 
Revenues (US$) 

Non-aeronautical 
Revenues  (US$) 

DMUs under review 

LYS1998 2.478.508 2.742.712 106.170 39.749 25.552.145 33.325.320 

LYS1999 2.565.033 2.935.515 116.894 39.050 29.032.107 37.403.371 

LYS2000 2.715.196 3.311.666 129.373 40.126 35.476.207 40.519.260 

LYS2001 2.714.678 3.393.929 132.903 38.902 41.348.698 44.483.257 

LYS2002 2.523.982 3.254.242 120.529 35.349 48.933.813 44.982.158 

LYS2003 2.571.177 3.368.718 118.489 35.494 58.338.026 47.915.432 

LYS2004 2.633.962 3.594.650 123.958 34.874 61.171.391 50.077.362 

LYS2005 2.682.123 3.879.242 128.868 38.725 68.845.652 55.678.876 

Output benchmarks for Lyon airport in 2005 

Benchmark Intensity (λ) 
Domestic 
Passengers 

International 
Passengers 

Movements Cargo 
Aeronautical 
Revenues (US$) 

Non-aeronautical 
Revenues  (US$) 

Short-term benchmark for non-aeronautical activities (model 3.2, θ1=1.15)    

MLH2004  0.98 651.102 1.893.772 57.915 34.227 30.882.599 38.867.805 

GLA2000  0.29 3.568.259 3.453.741 92.000 10.000 69.790.936 38.013.125 

GLA2005  0.16 4.604.022 4.237.878 97.610 9.461 76.125.667 63.356.734 

NCE2006  0.06 4.332.382 5.615.653 164.617 13.940 100.059.952 83.755.849 

Medium-term benchmark for non-aeronautical activities (model 3.1, θ1=1.4) 

MLH2004  1 651.102 1.893.772 57.915 34.227 30.882.599 38.867.805 

MLH2002  0.61 792.765 2.264.199 88.000 31.285 34.865.786 45.079.574 

MRS1998  0.39 3.943.382 1.568.411 87.030 55.993 19.795.312 31.681.597 

Medium-term benchmark for aeronautical activities (model 3.1, θ2=1.03) 

MLH2004  0.96 651.102 1.893.772 57.915 34.227 30.882.599 38.867.805 

GLA2000  0.52 3.568.259 3.453.741 92.000 10.000 69.790.936 38.013.125 

NCE2006  0.05 4.332.382 5.615.653 164.617 13.940 100.059.952 83.755.849 

Long-term benchmark for both activities (basic DEA, θ=1.4) 

LCY2002 0.4 417.551 1.187.449 53.000 1.000 38.509.245 12.353.716 

MLH2002  0.35 792.765 2.264.199 88.000 31.285 34.865.786 45.079.574 

OSL2007  0.19 9.477.511 9.566.489 223.000 97.000 177.975.321 245.588.135 

ATH2007  0.08 5.953.814 10.571.571 205.295 119.000 453.224.152 137.319.560 

 

Given that aeronautical revenue maximization is not necessarily an optimal policy, irrespective of 

ownership form, the combined formulation (3) defines aeronautical revenue as a non-discretionary 

output and maximizes commercial revenue alone. The results of this model suggest that Lyon‟s 

short-term commercial revenue target should be $63 million, an increase of 15%, given current 

aeronautical revenues. The medium-term target (formulation 2) suggests an increase of 40% in non-

aeronautical revenues to increase performance and the longer term, standard DEA target requires the 

same increase of 40% both on the commercial and non-aeronautical side respectively (Fig. 9). In the 

combined model, Basel-Mulhouse appears as an important benchmark and Glasgow acts as a 

benchmark of increasing intensity over the years. As also shown in Fig. 10, Lyon airport is moving 

in the direction of Basel-Mulhouse and Glasgow hence is increasing in performance over time. 
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Marseille no longer appears as a benchmark in the results of the combined model since the airport 

generates substantially lower aeronautical revenues in comparison.  

 

Non-aeronautical revenues 
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Fig. 9: Current and target output values for the independent and combined network model 

with respect to Lyon 

 

In summary, Lyon‟s aeronautical revenues hit their short-term targets by 2003 and their medium-

term benchmarks by 2005 (Fig. 9), suggesting that their landing and passenger charges are sufficient 

and should not be increased further. However, Lyon could still optimize commercial revenues in 

order to increase managerial productivity and better manage their joint revenue streams. The targets 

obtained from the basic DEA results would be very challenging in the short- or medium-term and 

should therefore be considered only as a long-term target if at all. As shown in the graphs of Fig. 9, 

several paths to the Pareto frontier can be defined for the airport, in which both aeronautical and non-



    31 

 

aeronautical revenues can be expanded, either equi-proportionally, or with greater emphasis on the 

non-aeronautical revenues such that the airport remains profit maximizing.  

 

 

Fig. 10: Co-plot of output maximization results with emphasis on Lyon
19

  

 

6. Conclusions and directions for future research 

 DEA has been repeatedly applied to the study of airport productivity however the basic DEA 

models treat the airport technology as a black box, which reduces the usefulness of the model for 

purposes of benchmarking. The focus of this paper has been to model the airport production process 

from a managerial perspective in order to provide a set of models that would aid benchmarking by 

applying a network DEA model. Usually network-DEA is applied to determine both the efficiency of 

sub processes and the overall efficiency (Golany et al. [36]) whereas in our research, network DEA 

helps decision-makers to describe the production process, demonstrating the sequential effects 

separating final and intermediate outputs including those under partial managerial control and those 

                                                 

19 Coefficient of alienation is 0.107 and average of correlations is 0.815. 
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that are known to be non-discretionary. Consequently, the approach connects aeronautical and 

commercial activities via intermediate products. 

To improve the set of peer airports chosen, a dynamic clustering mechanism limits DEA‟s dual 

variables (benchmark intensities) was used, ensuring appropriate comparability within the dataset. 

The dynamic clustering approach proposed by Golany and Thore [25] restricts the selection of best 

practice DMUs according to predefined boundaries within the basic DEA framework. We extended 

this method by using integer linear programming which forms reference sets based on similar mixes 

of inputs or outputs and intermediate products. As a result each DMU optimizes only the last stage of 

the network, taken into account the information from previous stages. In addition, PCA-DEA is 

applied to reduce the number of variables when clusters are too small to avoid the curse of 

dimensionality. By identifying individual reference sets using dynamic clustering we provide 

individual benchmarks for inefficient DMUs, permitting identification of strategy changes over time 

and uniqueness with respect to economic regulation and airport infrastructure. The formulation was 

further adapted to ensure partial flexibility with respect to an expensive and complicated 

infrastructure system. Finally, the provision of ground handling was shown to severely affect 

efficiency estimates, leading to a separation in the comparison of those airports that undertake the 

process in-house compared to those that outsource. 

Data proved to be the most difficult issue for this application. After defining salient variables (as 

in Fig. 1), we were then forced to reduce the model drastically in the light of data availability issues 

(as in Fig. 3). It would be extremely helpful were government organizations, such as the International 

Civil Aviation Organization, to standardize the data collection and publish data openly as this would 

enable fair and transparent comparisons. However, the results have shown that compared with the 

basic DEA approach, network DEA formulations provide more appropriate benchmarks which may 

enable airport managers to improve performance in the short and medium-term. In the case of 

Hanover, we show that in the short or medium term it is sufficient to close one of the three existing 

runways or expand their cargo operations to increase utilization, whereas basic DEA benchmarks 

require the airport to close the equivalent of two runways. In the case of Lyon we demonstrate that in 

the short-term the airport earns a sufficient level of aeronautical revenues and simply needs to focus 

on improvements on the commercial side. In comparison, the results of basic DEA require Lyon to 

increase aeronautical revenues by 40% in order to operate efficiently. In contrast to the results from 

basic DEA, we cannot conclude in our network DEA model that DMUs acting as benchmarks are 

necessarily efficient since they may deviate from the overall Pareto frontier if limited by the dynamic 

clustering restrictions. On the other hand, inefficient units may be consistently defined as relatively 

inefficient. 
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 To be in a position to undertake benchmarking exercises requires the collection and 

publication of airport related data provided openly at the federal level since such information would 

be of public interest. Furthermore, an airport also produces undesirable outputs such as delays. 

Besides the capacity utilization which has been considered in our research, delay substantially affects 

airport and airline performance and should clearly be included in a benchmarking study. For 

improved managerial benchmarking, disaggregated data with regard to non-aeronautical activities 

would help to identify successful strategies on the commercial side. Other factors that are beyond 

managerial control include the competitive environment, ownership structure and economic 

regulation. These aspects influence managerial behaviour, and accounting for them may further 

improve comparability and permit the relevant authorities to analyze the impact of cost or incentive 

based regulation on managerial performance. In order to assess technological changes over the ten-

year period, Malmquist DEA may be applied in future research. Furthermore, an airport is typical of 

an industry with lumpy investments, hence time lags between investment and changes in productivity 

should be considered, which would require adapting the formulations developed here in order to 

account for time.  
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Appendix: Airport Dataset
20 

Code Airport Country Time Period Ground Handling 

ABZ Aberdeen UK 1999 not provided 

AMS Amsterdam Netherlands 1998-2007 not provided 

ATH Athens Greece 2005-2007 not provided 

BHX Birmingham UK 2005 not provided 

BLQ Bologna Italy 2000-2005 provided 

BRE Bremen Germany 1998-2007 provided 

CGN Cologne-Bonn Germany 1998-2007 provided 

CPH Copenhagen Denmark 1998-2007 not provided 

DRS Dresden Germany 1998-2004 provided 

DTM Dortmund Germany 2001-2007 provided 

DUS Dusseldorf Germany 1998-2007 provided 

FLR Florence Italy 2000-2005 provided 

FRA Frankfurt Germany 2002-2007 provided 

GLA Glasgow UK 1999-2006 not provided 

GOA Genoa Italy 2000-2005 provided 

GVA Geneva Switzerland 1998-2007 not provided 

HAJ Hanover Germany 1998-2007 provided 

HAM Hamburg Germany 1998-2007 provided 

LBA Leeds-Bradford UK 1998-2006 not provided 

LCY London City UK 2002 not provided 

LEJ Leipzig Germany 1998-2002 provided 

LGW London Gatwick UK 1998-2002 not provided 

LHR London Heathrow UK 1998-2006 not provided 

LJU Ljubljana Slovenia 2004-2007 provided 

LTN London Luton UK 1998-2005 not provided 

LYS Lyon France 1998-2005 not provided 

MAN Manchester UK 1998-2006 not provided 

MLA Malta Malta 2005-2006 not provided 

MLH Basel-Mulhouse France 1998-2007 not provided 

MME Durham Tees Valley UK 2002 not provided 

MRS Marseille France 1998-2006 not provided 

MUC Munich Germany 1998-2007 provided 

NCE Nice France 1998-2006 not provided 

NUE Nuremberg Germany 1998-2007 provided 

OSL Oslo Norway 1999-2007 not provided 

RIX Riga Latvia 2004-2006 provided 

STN London Stansted UK 1998-2006 not provided 

STR Stuttgart Germany 1998-2007 provided 

SZG Salzburg Austria 2004-2007 provided 

TLL Tallinn Estonia 2002-2007 provided 

VCE Venice Italy 2000-2005 provided 

VIE Vienna Austria 1998-2007 provided 

ZRH Zurich Switzerland 1998-2007 not provided 

 

                                                 

20 Source: adapted from SH&E [67] and Airport Websites. 


